Part Number Hot Search : 
50100 PJF24N10 IPS521 3X216 P16080 N25F80 TCD1252 PD104
Product Description
Full Text Search
 

To Download TH72036KLD-CAA-000-RE Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  th72036 868/915mhz fsk/ask transmitter 3901072036 page 1 of 15 data sheet rev. 009 jun/12 features  fully integrated pll-stabilized vco  frequency range from 850 mhz to 930 mhz  single-ended rf output  fsk through crystal pulling allows modulation from dc to 40 kbit/s  high fsk deviation possible for wideband data transmission  ask achieved by on/off keying of internal power amplifier up to 40 kbit/s  wide power supply range from 1.95 v to 5.5 v  very low standby current  microcontroller clock output  on-chip low voltage detector  high over-all frequency accuracy  fsk deviation and center frequency independently adjustable  adjustable output power range from -13 dbm to +9.5 dbm  adjustable current consumption from 2.5 ma to 20.1 ma  conforms to en 300 220 and similar standards  10-pin quad flat no lead (qfn) package ordering code product code temperature code package code option code packing form code th72036 k ld caa-000 t u th72036 k ld caa-000 r e legend : temperature code: k for temperature range -40c to 125c package code: ld for qfn double packing form: re for reel, tu for tube ordering example: th72036kld-caa-000-tu application examples  tire pressure monitoring system (tpms)  remote keyless entry (rke)  automatic meter reading (amr)  alarm and security systems  garage door openers  home and building automation  low-power telemetry  wireless access control pin description general description the th72036 fsk/ask transmitter ic is designed for applications in the european 868 mhz industrial- scientific-medical (ism) band, according to the en 300 220 telecommunications standard. it can also be used for any other system with carrier frequencies ranging from 850 mhz to 930 mhz (e.g. for applicati ons in the us 902 to 928 mhz ism band). the transmitter's carrier frequency f c is determined by the frequency of the reference cr ystal f ref . the inte- grated pll synthesizer ensures that carrier frequen cies, ranging from 850 mhz to 930 mhz, can be achieved. this is done by using a crystal with a reference f requency according to: f ref = f c /n, where n = 32 is the pll feedback divider ratio. a clock signal with selectable frequency is provide d. it can be used to drive a microcontroller. top view out vee vcc ckdiv psel ckout fsksw roi entx fskdta
th72036 868/915mhz fsk/ask transmitter 3901072036 page 2 of 15 data sheet rev. 009 jun/12 document content 1 theory of operation ............................... ................................................... ................. 3 1.1 general ........................................... ................................................... ................................ 3 1.2 block diagram ..................................... ................................................... ............................ 3 2 functional description ............................ ................................................... ............... 3 2.1 crystal oscillator ................................ ................................................... ............................. 3 2.2 fsk modulation .................................... ................................................... .......................... 4 2.3 crystal pulling ................................... ................................................... .............................. 4 2.4 ask modulation .................................... ................................................... .......................... 5 2.5 output power selection............................. ................................................... ...................... 5 2.6 lock detection .................................... ................................................... ............................ 5 2.7 low voltage detection ............................. ................................................... ....................... 5 2.8 mode control logic ................................ ................................................... ......................... 6 2.9 clock output ...................................... ................................................... ............................. 6 2.10 timing diagrams ................................... ................................................... ....................... 6 3 pin definition and description .................... ................................................... ........... 7 4 electrical characteristics ........................ ................................................... ............... 8 4.1 absolute maximum ratings .......................... ................................................... ................... 8 4.2 normal operating conditions ....................... ................................................... ................... 8 4.3 crystal parameters ................................ ................................................... ......................... 8 4.4 dc characteristics ................................ ................................................... .......................... 9 4.5 ac characteristics ................................ ................................................... ........................ 10 4.6 ac characteristics ................................ ................................................... ........................ 11 4.7 output power steps ? ask mode ..................... ................................................... ............ 11 5 test circuit ...................................... ................................................... ...................... 12 5.1 test circuit component list to fig. 6 ............. ................................................... .................. 12 6 package description ............................... ................................................... .............. 13 6.1 soldering information ............................. ................................................... ....................... 13 6.2 recommended pcb footprints ........................ ................................................... ............. 13 7 standard information regarding manufacturability of melexis products with different soldering processes ..................... ................................................... ......... 14 8 esd precautions ................................... ................................................... ................ 14 9 disclaimer ........................................ ................................................... ...................... 15
th72036 868/915mhz fsk/ask transmitter 3901072036 page 3 of 15 data sheet rev. 009 jun/12 1 theory of operation 1.1 general as depicted in fig.1, the th72036 transmitter consi sts of a fully integrated voltage-controlled oscill ator (vco), a divide-by-32 divider (div32), a phase-freq uency detector (pfd) and a charge pump (cp). an int er- nal loop filter determines the dynamic behavior of the pll and suppresses reference spurious signals. a colpitts crystal oscillator (xosc) is used as the r eference oscillator of a phase-locked loop (pll) sy nthe- sizer. the vco?s output signal feeds the power ampl ifier (pa). the rf signal power p out can be adjusted in four steps from p out = ?11 dbm to +9.5 dbm, either by changing the valu e of resistor rps or by varying the voltage v ps at pin psel. the open-collector output (out) can b e used either to directly drive a loop antenna or to be matched to a 50ohm load. bandgap biasing e nsures stable operation of the ic at a power supply range of 1.95 v to 5.5 v. 1.2 block diagram fig. 1: block diagram with external components 2 functional description 2.1 crystal oscillator a colpitts crystal oscillator with integrated funct ional capacitors is used as the reference oscillato r for the pll synthesizer. the equivalent input capacitance cro o ffered by the crystal oscillator input pin roi is a bout 18pf. the crystal oscillator is provided with an am plitude control loop in order to have a very stable fre- quency over the specified supply voltage and temper ature range in combination with a short start-up ti me. cx1 fskdta antenna matching network xosc pa xbuf vco pll cp pfd 32 out psel fsksw roi xtal cx2 vee 9 1 8 6 32 10 vcc div 8 div 32 ckdiv 5 7 mode control entx 4 ckout askdta rps r1
th72036 868/915mhz fsk/ask transmitter 3901072036 page 4 of 15 data sheet rev. 009 jun/12 f min f c f f max eff cl eff cl r1 c1 c0 l1 xtal cl cx1 cro cx1+cro (cx1+cx2) cro cx1+cx2+cro 2.2 fsk modulation fsk modulation can be achieved by pulling the crystal oscillator frequency. a cmos- compatible data stream applied at the pin fskdta digitally modulates the xosc via an integrated nmos switch. two external pulling capacitors cx1 and cx2 allow the fsk devia- tion ? f and the center frequency f c to be ad- justed independently. at fskdta = 0, cx2 is connected in parallel to cx1 leading to the low- frequency component of the fsk spectrum (f min ); while at fskdta = 1, cx2 is deactivated and the xosc is set to its high frequency f max . an external reference signal can be directly ac- coupled to the reference oscillator input pin roi. then the transmitter is used without a crystal. now the reference signal sets the car- rier frequency and may also contain the fsk (or fm) modulation. fig. 2: crystal pulling circuitry fskdta description 0 f min = f c - ? f (fsk switch is closed) 1 f max = f c + ? f (fsk switch is open) 2.3 crystal pulling a crystal is tuned by the manufacturer to the required oscillation frequency f 0 at a given load capacitance cl and within the specified calibra- tion tolerance. the only way to pull the oscilla- tion frequency is to vary the effective load ca- pacitance cl eff seen by the crystal. figure 3 shows the oscillation frequency of a crystal as a function of the effective load ca- pacitance. this capacitance changes in accor- dance with the logic level of fskdta around the specified load capacitance. the figure illus- trates the relationship between the external pulling capacitors and the frequency deviation. it can also be seen that the pulling sensitivity increases with the reduction of cl. therefore, applications with a high frequency deviation require a low load capacitance. for narrow band fsk applications, a higher load capaci- tance could be chosen in order to reduce the frequency drift caused by the tolerances of the chip and the external pulling capacitors. fig. 3: crystal pulling characteristic for ask applications cx2 can be omitted. then cx1 h as to be adjusted for center frequency. cx2 vcc xtal cx1 roi fsksw vee
th72036 868/915mhz fsk/ask transmitter 3901072036 page 5 of 15 data sheet rev. 009 jun/12 2.4 ask modulation the th72036 can be ask-modulated by applying data d irectly at pin psel. this turns the pa on and off which leads to an ask signal at the output. 2.5 output power selection the transmitter is provided with an output power se lection feature. there are four predefined output p ower steps and one off-step accessible via the power sel ection pin psel. a digital power step adjustment wa s chosen because of its high accuracy and stability. the number of steps and the step sizes as well as t he corresponding power levels are selected to cover a wide spectrum of different applications. the implementation of the output power control logic is shown in figure 4. there are two matched current sources with an amount of about 8 a. one current source is directly ap- plied to the psel pin. the other current source is used for the generation of reference voltages with a resistor ladder. these reference voltages are defining the thresholds between the power steps. the four comparators deliver thermome- ter-coded control signals depending on the voltage level at the pin psel. in order to have a certain amount of ripple tolerance in a noisy environment the comparators are provided with a little hysteresis of about 20 mv. with these control signals, weighted current sources of the power amplifier are switched on or off to set the desired output power level (digitally controlled current source). the lock, ask signal and the output of the low voltage detector are gating this current source. fig. 4: block diagram of output power control circu itry there are two ways to select the desired output pow er step. first by applying a dc voltage at the pin psel, then this voltage directly selects the desired outp ut power step. this kind of power selection can be used if the transmission power must be changed during opera tion. for a fixed-power application a resistor can be used which is connected from the psel pin to ground . the voltage drop across this resistor selects the de- sired output power level. for fixed-power applicati ons at the highest power step this resistor can be omitted. the pin psel is in a high impedance state during th e ?tx standby? mode. 2.6 lock detection the lock detection circuitry turns on the power amp lifier only after pll lock. this prevents from unwa nted emission of the transmitter if the pll is unlocked. 2.7 low voltage detection the supply voltage is sensed by a low voltage detec t circuitry. the power amplifier is turned off if t he supply voltage drops below a value of about 1.85 v. this i s done in order to prevent unwanted emission of the transmitter if the supply voltage is too low. & & & psel & & rps out
th72036 868/915mhz fsk/ask transmitter 3901072036 page 6 of 15 data sheet rev. 009 jun/12 2.8 mode control logic the mode control logic allows two different modes of operation as listed in the following table. the mode control pin en is pulled-down internally. this guarantees that the whole circuit is shut down if this pin is left floating. en mode description 0 tx standby tx disabled 1 tx active ckout active tx / ckout enabled 2.9 clock output the clock output ckout is cmos-compatible and can b e used to drive a microcontroller. the frequency of the clock can be selected by the clock divider cont rol signal ckdiv, according to the following table. a capacitor at pin ckout can be used to control the clock voltage swing and the rf spurious emission. ckdiv clock divider ratio clock frequency / f c =868.3mhz 0 8 3.39mhz 1 32 848khz 2.10 timing diagrams after enabling the transmitter by the en signal, th e power amplifier remains inactive for the time t on , the transmitter start-up time. the crystal oscillator s tarts oscillation and the pll locks to the desired output fre- quency within the time duration t on . after successful pll lock, the lock signal turns on the power amplifier, and then the rf carrier can be fsk or ask modulated . fig. 5: timing diagrams for fsk and ask modulation rf carrier low low high high lock fskdta t low high en t on en low low high high lock psel t low high t on
th72036 868/915mhz fsk/ask transmitter 3901072036 page 7 of 15 data sheet rev. 009 jun/12 3 pin definition and description pin no. name i/o type functional schematic description 1 fskdta input fsk data input, cmos compatible with in- ternal pull-up circuit tx standby: no pull-up tx active: pull-up 2 fsksw analog i/o xosc fsk pulling pin, mos switch 3 roi analog i/o xosc connection to xtal, colpitts type crystal oscillator 4 en input mode control input, cmos-compatible with in- ternal pull-down circuit 5 ckout output clock output, cmos-compatible 6 psel analog i/o power select input, high- impedance comparator logic tx standby: i psel = 0 tx active: i psel = 8a 7 ckdiv input clock divider control input, cmos compatible with in- ternal pull-down circuit tx standby: no pull-down tx active: pull-down 8 out output power amplifier output, open collector 9 vee ground negative power supply 10 vcc supply positive power supply 1 1.5k 0: entx=1 1: entx=0 fskdta fsksw 2 roi 3 36p 36p 25k en 4 1.5k 5 ckout 400 psel 6 1.5k 8a 7 1.5k ckdiv 0: entx=0 1: entx=1 out 8 vee vcc vee
th72036 868/915mhz fsk/ask transmitter 3901072036 page 8 of 15 data sheet rev. 009 jun/12 4 electrical characteristics 4.1 absolute maximum ratings parameter symbol condition min max unit supply voltage v cc 0 7.0 v input voltage v in -0.3 v cc +0.3 v storage temperature t stg -65 150 c junction temperature t j 150 c thermal resistance r thja 49 k/w power dissipation p diss 0.12 w electrostatic discharge v esd human body model (hbm) according to cdf-aec- q100-002 2.0 kv 4.2 normal operating conditions parameter symbol condition min max unit supply voltage v cc 1.95 5.5 v operating temperature t a -40 125 c input low voltage cmos v il en, fskdta 0.3*v cc v input high voltage cmos v ih en, fskdta 0.7*v cc v xosc frequency f ref set by the crystal 26.6 29 mhz vco frequency f c f c = 32 ? f ref 850 930 mhz clock frequency f clk ckdiv=0, f clk = f ref / 8 3.3 3.6 mhz ckdiv=1, f clk = f ref / 32 831 906 khz fsk deviation ? f depending on cx1, cx2 and crystal parameters 2.5 40 khz fsk data rate r nrz 40 kbit/s ask data rate r nrz 40 kbit/s 4.3 crystal parameters parameter symbol condition min max unit crystal frequency f 0 fundamental mode, at 26.6 29 mhz load capacitance c l 10 15 pf static capacitance c 0 7 pf series resistance r 1 50 spurious response a spur only required for fsk -10 db
th72036 868/915mhz fsk/ask transmitter 3901072036 page 9 of 15 data sheet rev. 009 jun/12 4.4 dc characteristics all parameters under normal operating conditions, u nless otherwise stated; typical values at t a = 23 c and v cc = 3 v parameter symbol condition min typ max unit operating currents standby current i sby en=0, t a =85c 0.2 200 na en=0, t a =125c 4 a supply current in power step 0 i cc0 en=1 2.5 4.3 7.4 ma supply current in power step 1 i cc1 en=1 3.5 5.5 9.4 ma supply current in power step 2 i cc2 en=1 4.5 6.8 11.1 ma supply current in power step 3 i cc3 en=1 6.2 9.0 13.8 ma supply current in power step 4 i cc4 en=1 9.4 13.8 20.1 ma digital pin characteristics input low voltage cmos v il en, fskdta -0.3 0.3*v cc v input high voltage cmos v ih en, fskdta 0.7*v cc v cc +0.3 v pull down current, en i pden en=1 0.2 4.0 40 a low level input current, en i inlen en=0 0.02 a high level input current, fskdta i inhdta fskdta=1 0.02 a pull up current fskdta active mode i pudtaa fskdta=0, en=1 0.1 1.5 12 a pull up current fsk standby mode i pudtas fskdta=0, en=0 0.02 a low level input current ckdiv i inlckdiv ckdiv=0 0.02 a pull-down current ckdiv active mode i pdckdiva ckdiv=1, en=1 0.1 1.5 12 a pull-down current ckdiv standby mode i pdckdivs ckdiv=1, en=0 0.02 a fsk switch resistance mos switch on resistance r on fskdta=0, en=1 20 70 mos switch off resistance r off fskdta=1, en=1 1 m power select characteristics power select current i psel en=1 7.0 8.6 9.9 a power select voltage step 0 v ps0 en=1 0.035 v power select voltage step 1 v ps1 en=1 0.14 0.24 v power select voltage step 2 v ps2 en=1 0.37 0.60 v power select voltage step 3 v ps3 en=1 0.78 1.29 v power select voltage step 4 v ps4 en=1 1.55 v low voltage detection characteristic low voltage detect threshold v lvd en=1 1.75 1.85 1.95 v
th72036 868/915mhz fsk/ask transmitter 3901072036 page 10 of 15 data sheet rev. 009 jun/12 4.5 ac characteristics all parameters under normal operating conditions, u nless otherwise stated; typical values at t a = 23 c and v cc = 3 v; test circuit shown in fig. 6, f c = 868.3mhz parameter symbol condition min typ max unit cw spectrum characteristics output power in step 0 (isolation in off-state) p off en=1 -70 dbm output power in step 1 p 1 en=1 -13 -12 -11 1) dbm output power in step 2 p 2 en=1 -4 -3 -2 1) dbm output power in step 3 p 3 en=1 1 2.5 3.5 1) dbm output power in step 4 p 4 en=1 4 7.5 9.5 1) dbm phase noise l(f m ) @ 200khz offset -87 -82 dbc/hz spurious emissions according to en 300 220-1 (2000.09) table 13 p spur 47mhz< f <74mhz 87.5mhz< f <118mhz 174mhz< f <230mhz 470mhz< f <862mhz b=100khz -54 dbm f < 1ghz, b=100khz -36 dbm f > 1ghz, b=1mhz -30 dbm clock output characteristics output low voltage cmos v ol depending on capaci- tor cck and ckdiv 0.3*v cc v output high voltage cmos v oh 0.7*v cc v start-up parameters start-up time t on from standby to transmit mode 0.6 1 ms frequency stability frequency stability vs. supply voltage df vcc 3 ppm frequency stability vs. tem- perature df ta crystal at constant temperature 10 ppm frequency stability vs. varia- tion range of c ro df cro 20 ppm 1) output matching network tuned for 5v supply
th72036 868/915mhz fsk/ask transmitter 3901072036 page 11 of 15 data sheet rev. 009 jun/12 rps r1 6 psel rps r1 vcc 6 psel v pslow v pshigh 4.6 ac characteristics power step 0 1 2 3 4 rps / k < 3 22 56 120 not connected 4.7 output power steps ? ask mode typical values at t a = 23 c and v cc = 3 v; test circuit shown in fig. 6 power step 1 2 3 4 rps / k 2.4 2.8 3.5 not connected r1 / k ? 36 14 7 0 v pslow = voltage across rps if ask_dta at 0v v pshigh = voltage across rps if ask_dta at vcc if the transmitter is operated at any supply voltag e v cc , the values for r1 and rps can be calculated as fo l- lows: pshigh psel pslow cc v i v v r ? ? = 1 pshigh cc pshigh ps v v v r r ? = 1
th72036 868/915mhz fsk/ask transmitter 3901072036 page 12 of 15 data sheet rev. 009 jun/12 5 test circuit fig. 6: test circuit for fsk and ask with 50 matching network 5.1 test circuit component list to fig. 6 part size value @ 868.3 mhz value @ 915 mhz tolerance description cm1 0805 1.8 pf 2.2 pf 5% impedance matching capacitor cm2 0805 5.6 pf 5.6 pf 5% impedance matching capacitor cm3 0805 68 pf 68 pf 5% impedance matching capacitor lm 0805 12 nh 10 nh 5% impedance matching inductor, note 2 lt 0805 15 nh 10 nh 5% output tank inductor, note 2 cx1 _fsk 0805 22 pf 22 pf 5% xosc fsk capacitor ( ? f = 20 khz), note 1 cx1 _ask 0805 27 pf 27 pf 5% xosc ask capacitor, trimmed to f c , note 1 cx2 0805 12 pf 12 pf 5% xosc capacitor ( ? f = 20 khz), note 1 only needed for fsk cck 0805 15 pf / 180 pf 5% clock spur suppression capacitor, ckdiv 0 / 1 rps 0805 see section 4.6 5% fsk or cw mode power-select resistor r1 see section 4.7 ask power-select resistor, not used at fsk cb0 0805 220 nf 20% de-coupling capacitor cb1 0805 330 pf 10% de-coupling capacitor xtal smd 6x3.5 27.13438 mhz 28.59375 mhz 30ppm calibr. 30ppm temp. fundamental wave crystal, cl = 12 pf, c0, max = 7 pf, r1 = 40 note 1: value depending on crystal parameters note 2: for high-power applications high-q wire-wound in ductors should be used cb1 cm1 cm2 out cm3 lm lt rps cb0 ckout ckdiv gnd fsk_dta ask_dta vcc en 2 3 1 gnd 2 1 2 1 gnd vcc f s k d t a c k o u t f s k s w v e e c k d i v e n r o i v c c p s e l o u t 6 7 8 9 10 r1 xtal cx2 cx1 cck 5 4 3 1 2 vcc gnd 2 1 2 1 gnd 2 1
th72036 868/915mhz fsk/ask transmitter 3901072036 page 13 of 15 data sheet rev. 009 jun/12 6 package description the device th72036 is rohs compliant. a a 1 a3 d e 1 5 6 1 0 e b e2 d2 l 0.36 0.2 25x45 0.2 3 expos ed pad exposed pad not connected to internal gnd. it sh ould not be connecte d to the pc b. it can be with or withou t fingers. fig. 7: 10l qfn 3x3 dual all dimensions in mm d e d2 e2 a a1 a3 l e b min 2.85 2.85 2.23 1.49 0.80 0 0.20 0.3 0.50 0.18 max 3.15 3.15 2.48 1.74 1.00 0.05 0.5 0.30 all dimensions in inch min 0.112 0.112 0.0878 0.051 0.0315 0 0.0079 0.0118 0.0197 0.0071 max 0.124 0.124 0.0976 0.055 0.0393 0.002 0.0197 0.0118 6.1 soldering information ? the device th72036 is qualified for msl1 with sold ering peak temperature 260 deg c according to jedec j-std-20 6.2 recommended pcb footprints all dimensions in mm z g d2 th e2 th x y c pl e min 3.55 1.9 3.2 1.3 0.25 0.7 0.3 0.5 max 3.90 2.3 3.6 1.7 0.30 1.0 0.5 all dimensions in inch min 0.1398 0.0748 0.1260 0.0512 0.0098 0.0276 0.0591 0.0197 max 0.1535 0.0906 0.1417 0.0669 0.0118 0.0394 0.0197 fig. 8: pcb land pattern style solder stop solder pad e x y c pl e2 th d2 th z g 1 5 6 10
th72036 868/915mhz fsk/ask transmitter 3901072036 page 14 of 15 data sheet rev. 009 jun/12 7 standard information regarding manufacturability of melexis products with different soldering processes our products are classified and qualified regarding soldering technology, solderability and moisture sensitivity level according to following test metho ds: reflow soldering smd?s (s urface m ount d evices) ? ipc/jedec j-std-020 moisture/reflow sensitivity classification for nonh ermetic solid state surface mount devices (classification reflow profiles according to table 5-2) ? eia/jedec jesd22-a113 preconditioning of nonhermetic surface mount device s prior to reliability testing (reflow profiles according to table 2) wave soldering smd?s (s urface m ount d evices) and thd?s (t hrough h ole d evices) ? en60749-20 resistance of plastic- encapsulated smd?s to combin ed effect of moisture and soldering heat ? eia/jedec jesd22-b106 and en60749-15 resistance to soldering temperature for through-hol e mounted devices iron soldering thd?s (t hrough h ole d evices) ? en60749-15 resistance to soldering temperature for through-hol e mounted devices solderability smd?s (s urface m ount d evices) and thd?s (t hrough h ole d evices) ? eia/jedec jesd22-b102 and en60749-21 solderability for all soldering technologies deviating from above mentioned standard conditions (regarding peak temperature, temperature gradient, temperature prof ile etc) additional classification and qualificatio n tests have to be agreed upon with melexis. the application of wave soldering for smd?s is allo wed only after consulting melexis regarding assuran ce of adhesive strength between device and board. melexis is contributing to global environmental con servation by promoting lead free solutions. for more information on qualifications of rohs compliant products (rohs = european directive on t he restriction of the use of certain hazardous substances) please vis it the quality page on our website: http://www.melexis.com/quality.aspx 8 esd precautions electronic semiconductor products are sensitive to electro static discharge (esd). always observe electro static discharge control pro cedures whenever handling semiconductor products.
th72036 868/915mhz fsk/ask transmitter 3901072036 page 15 of 15 data sheet rev. 009 jun/12 9 disclaimer devices sold by melexis are covered by the warranty and patent indemnification provisions appearing in its term of sale. melexis makes no warranty, express, s tatutory, implied, or by description regarding the information set forth herein or regarding the freed om of the described devices from patent infringemen t. melexis reserves the right to change specifications and prices at any time and without notice. therefo re, prior to designing this product into a system, it is nece ssary to check with melexis for current information . this product is intended for use in normal commercial ap plications. applications requiring extended tempera ture range, unusual environmental requirements, or high reliability applications, such as military, medical life- support or life-sustaining equipment are specifical ly not recommended without additional processing by melexis for each application. the information furnished by melexis is believed to be correct and accurate. however, melexis shall no t be liable to recipient or any third party for any dama ges, including but not limited to personal injury, property damage, loss of profits, loss of use, interrupt of business or indirect, special incidental or consequ ential damages, of any kind, in connection with or arising out of the furnishing, performance or use of the t echnical data herein. no obligation or liability to recipien t or any third party shall arise or flow out of mel exis? rendering of technical or other services. ? 2012 melexis nv. all rights reserved. for the latest version of this document, go to our website at www.melexis.com or for additional information contact melexis direc t: europe, africa, asia: america: phone: +32 1367 0495 phone: +1 248 306 5400 e-mail: sales_europe@melexis.com e-mail: sales_usa @melexis.com iso/ts 16949 and iso14001 certified


▲Up To Search▲   

 
Price & Availability of TH72036KLD-CAA-000-RE

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X